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A B S T R A C T  

The increasing availability and versatility of drones in the last few years have made 

them an interesting tool to disrupt privacy, safety and security: they are small, fast 
and have sufficient payload to carry dangerous items. Because of their size and 
speed, they can be hard to detect and track. In this paper, we propose an efficient 
approach based on YOLOv3 [1] to detect drones in high resolution images by 

integrating an image tiling strategy. With this approach, we finished in second place 
in the 2020 Drone-vs-Bird Challenge (0.2% behind the winners). Finally, we also 
describe the ALEXIS system we have developed that can detect and classify using this 
approach, and track drones in real time from multiple cameras in different bands. 

 

I. INTRODUCTION 

Unmanned Aerial Systems (UAS), commonly called drones, have seen an 
exponential growth in their proliferation on the commercial market. Grand View 
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Research mentioned that the ”global commercial drone market (GCDM) size was 
valued at USD 5.80 billion, with an estimated 274.6 thousand units sold, in 2018” 
[2]. The same group also reported that the “GCDM size is anticipated to reach USD 
129.23 billion by 2025” [3]. 

Commercial drones are still evolving. For example, drones costing less than 
$2000 now possess some payload capacity along with sensitive, high-quality and 
image stabilized cameras. They constitute a potential threat for the safety and 
security of the general population and government agencies around the world [4], 
since they require very little knowledge or skills to deploy and can be weaponized. 
There have been many occurrences around the world where drones have been 
used for that purpose. For instance, in 2018, a swarm of 13 armed drones built from 
gathered parts attacked a Russian base in Syria [5]. 

For such reason, drones are considered an important threat by Canadian Armed 
Forces (CAF) and they are looking at different solutions to be protected against this 
new threat. Among other things, they are evaluating the strengths and limitations 
of their actual equipment and different industrial solutions, which may use 
technologies such as radar, radio frequencies, electro-optic and infrared (IR) 
sensors, etc. 

In support to the CAF, Defence Research and Development Canada (DRDC) was 
mandated to evaluate the performance of electro-optical and infrared systems to 
detect, recognize, identify, and track micro and mini Class 1 (NATO UAS 
classification [6]) drones and to propose enhancements to these systems. The main 
objective of the CAF is to detect drones far enough to have time to engage it. 
However, the farther they are, the smaller they appear in images. It thus makes it 
more difficult to detect them with standard image processing techniques.  

In this work, we propose a solution to overcome the problem of detecting small 
drones in colour images, as shown in Figure 1. Some related works are presented 
in section 2. In section 3, we describe the architecture of YOLOv3 (You Only Look 
Once) [1] along with specific details of our implementation. In section 4, we specify 
the data and augmentation techniques we have used to train our approach. In 
section 5, we perform several experiments to show the performance of our 
approach under different circumstances and report the official results of the 2020 
Drone-vs-Bird Challenge in which we participated. In section 6, we describe our fully 
integrated system for detection and tracking with multiple cameras. Finally, in 
section 7, we conclude by discussing some limitations of our approach and propose 
potential directions for future work.  
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Figure 1: Our approach based on YOLOv3 [1] is able to detect small drones in high 

resolution images by using an image tiling strategy. Here are some examples of 
successful detections made by our approach (green: predictions, red: ground-truths). 
Only a slight part of the red box can be seen in the left image because the green box 
masks it.  

II. RELATED WORK 

One of the main challenges of drone detection is the relatively small size of drones 
in images, which makes them hardly distinguishable from other flying objects such 
as birds, planes, etc. Different interesting solutions have been proposed in the 
literature: using temporal information, increasing image resolution, generating 
artificial datasets, etc. In this section, we review some of them. 

Since 2012, when AlexNet [7] won the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) by a wide margin, most of the computer vision research and 
state-of-the-art approaches have been based on deep learning. The problem of 
localizing drones in colour images has not been an exception [8]–[13]. For instance, 
Nalamati et al. [9] and Saqib et al. [13] evaluated the performance of different 
object state-of-the-art detectors such as Faster Region Based Convolutional Neural 
Networks (R-CNN) [14] and Single shot multibox detector (SSD) [15] on images 
coming from the Drones-vs-Bird Challenge [16]. According to [13], they evaluated 
different backbone networks for Faster R-CNN, but only evaluated their networks 
on the training set. Their best reported mean Average Precision (mAP) score was 
0.66. They concluded that training for an extra class (birds) instead of training only 
for drones would likely decrease the number of false positives made by their 
networks. Likewise, Nalamati et al. [9] compared the performance of Faster R-CNN 
and SSD, with Faster R-CNN being the clear winner with a mAP of 0.49 on the test 
set (images not seen in training). As a comparison, our approach achieved a mAP 
superior to 0.90 when using similar data splits (see section 5.1). 

A common limitation of object detectors is that they do not exploit temporal 
information. In the case of drones and other flying objects, using temporal 
information would allow networks to distinguish moving/flying objects from still 
ones and differentiate them by their flying patterns. The winning approach [17] of 
the 2019 Drone-vs-Bird Challenge [16], for instance, was based on this principle. 
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They first used multiple frames in input to detect moving objects, then classified 
them using a Residual Network (ResNet) [18] and filtered the predictions using 
spatio-temporal information. 

To tackle the problem of small objects, the runner-ups of the 2019 Drone-vs-
Bird Challenge [16] proposed to use a super resolution network [19] to increase the 
spatial resolution of images by a factor of 2, which significantly boosted the recall 
performance of their detector. This technique is an interesting way to improve 
detection performances, but has the downside of slowing the approach.  

Lack of annotated data for drone detection has been a major limitation for a 
while. The 80 annotated videos (more than 100k frames) in the Drone-vs-Bird 
Challenge [16] is partially solving that problem. The remaining problem is that it is 
difficult to acquire image sequences in different settings, since it requires changing 
physical location and it is now restricted in many places to fly drones. This lack of 
diversity in datasets can make the models prone to overfit (memorize the settings) 
and perform poorly when using the model elsewhere of in different weather 
conditions. 

To overcome this problem, a simple solution can be to generate synthetic 
datasets, which has shown in the literature to be a good way to boost the 
performance of object detectors [20]–[23]. For instance, according to [20] they 
propose a simple strategy of cropping objects of interest and pasting them on real 
images with different blending techniques to reduce the artefacts at the edge of 
objects. Aker and Kalkan [11] have used a similar technique to generate a detection 
dataset for drones and birds. Similarly, He et al. [18] have generated a classification 
dataset to distinguish drones from birds. They first detect the objects either with 
background subtraction if the camera is fixed or with a Region Proposal Network 
(RPN) if the camera is moving. RPN is the first part of Faster R-CNN and it predicts 
regions likely to contain objects (independent of their class).  

III. Network Implementation 

Our architecture is based on the single-stage object detector YOLOv3 [1]. We have 
chosen this detector because of its good performance and fast processing 
compared to two-stage approaches. 

In YOLOv3, detections are made at 3 different resolutions (1/32, 1/16 and 1/8 
of the original resolution) using 3 predefined anchors for each resolution (10 x 13, 
16 x 30, 33 x 23, 30 x 61, 62 x 45, 59 x 119, 116 x 90, 156 x 198, 373 x 326). For each 
of these anchors, YOLO predicts objectness scores, class scores and size/location 
offsets. 

We employed the public PyTorch implementation of YOLOv3 with Spatial 
Pyramid Pooling (YOLOv3-SPP) made available by Ultralytics [24]–[25]. As shown in 
Figure 2, the SPP layer applies different max pooling layers of different size in 
parallel and concatenates their outputs into feature maps of the same size as the 
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input by using appropriate padding. In this implementation, SPP is applied to the 
output of the backbone before the YOLO detection layers.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Spatial Pyramid Pooling (SPP) for YOLO [25]. Three max-pooling layers of 
different size process the input in parallel and keep the original resolution with 
appropriate padding. The output is a concatenation of the three processed feature maps 
and the input.  

We selected the version pretrained on the Microsoft Coco dataset [26]. We then 
trained the network for a certain number of epochs (depending on the size of the 
dataset for which we trained for). For Drone-vs-Bird, we trained for 5 epochs with 
Stochastic Gradient Descent (SGD) at an initial learning rate of 0.001 and drops of 
50% at epochs 3 and 4. For other datasets, the number of epochs was adjusted to 
get a similar number of training iterations and the learning rate was multiplied at 
60% and 80% of the epochs. The network was trained using a single class (drone) 
and was optimized both for objectness (using the binary cross-entropy loss) and 
bounding box regression (using the complete Intersection loss [27] instead of the 
sum of squared error loss proposed in YOLOv3 [1]). 

IV. Data 

In this section, we describe the Drone-vs-Bird dataset and other datasets that we 
have generated or acquired. We also detail our proposed image tiling strategy and 
enumerate the data augmentation strategies we have employed. 

A. Datasets 

Since we participated in the 2020 Drones-vs-Bird challenge, the main dataset we 
have used is the training dataset of the challenge. One of the 77 annotated 
sequences appeared to have bad annotations, so we removed it from training. 
Images were extracted from videos at their original frame rate for a total of around 
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106k frames. In the dataset, only drones were annotated (birds only appear as 
background). 

 

 

Figure 3: Example of an infrared image acquired by the DRDC. Drone is shown with a 
bounding box. 

In addition to this dataset, we have followed the procedure of Cut, Paste and 
Learn [20] to generate 26.5k synthetic images. We have manually segmented 
objects of around 100 images of drones and birds acquired from Google Images 
which were then pasted on different outdoor backgrounds from Kaggle1  using 
different blending techniques. Images were selected to offer a wide variety of 
backgrounds and targets (birds and drones). Drones images from public domain or 
licensable 2  were selected randomly on Google Images, but those with white 
background were prioritized in our selection to ease segmentation and synthetic 
image creation. Since the Drone-vs-Bird did not include annotations for birds, we 
did not generate annotations for them neither in this synthetic dataset.  

Finally, we have acquired close to 35k images with 3 different infrared cameras 
(e.g. in Figure 3) and colour cameras equipped with 2 different lenses to get 
different zoom levels during the NATO SET-260 [28] trial in June 2019. Among these 
images, around 8k images have been dropped in the dataset cleaning phase in 
which we removed those with bad quality or bad annotations.  

Note that synthetic data was used for this work and they were not published or 
made available for public usage. No illustration in this document contains synthetic 
image information. Dataset from DRDC was also not released for public usage.  

B. Image Tiling 

Usually, before feeding images to convolutional neural networks, images are 
downsized to a certain resolution to get a faster result. However, drones can be 
really small (10-20 pixels) and the input image can be of a really high resolution.  

                                                             
1 Landscape pictures: https://www.kaggle.com/arnaud58/landscape-pictures. 
2 For example, Amazon provides a l icense for personal or non-commercial use. 
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Therefore, downsizing the input image to a low resolution can have a detrimental 
effect on the performance of the network. 

Instead of downsizing, we propose to keep the original resolution and split the 
image into multiple overlapping tiles, as shown in Figure 4. This strategy has shown 
great potential to detect small objects [29]. At inference, a batch is generated from 
the full resolution image. The predictions are then corrected with the location of 
each tile in the input image and are post-processed with Non-maximum 
Suppression. 
 
 
 

 

Figure 4: Tiling strategy used at inference. We create a batch of test images by cropping 
the input image from multiple overlapping tiles organized in a grid-like structure. 
Predictions are then adjusted with the tile position in the input image and then post-
processed with Non-maximum Suppression. 

In training, we follow a slightly different protocol, as shown in Fig. 5. Instead of 
training on all image tiles, which mostly include background, we only sample 1 tile 
in every image. This tile is sampled at a random location in the image (not in a grid-
like structure such as in inference). It is sampled 80% of the time at a location that 
includes a drone in order to show more positive examples and 20% of the time at a 
completely random location to see some background examples. 

C. Data Augmentation 

We used several augmentation methods such as affine transformations, horizontal 
flips, blurs, noise, contrast, brightness, colour perturbations and many others from 
the Albumentations package [30] (such as rain, as shown in Fig. 6a). We also used 
style augmentation [31] (Fig. 6b), which is a style transfer technique that can 
potentially help generalizing to different domains. 
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Figure 5: During training, the input image is randomly cropped.  80% of the time, it is 

cropped at a location that includes a drone. In this image, we show the area covered by 
all possible crop locations to include this drone. 

  
(a) (b) 

Figure 6: Examples of our data augmentation pipeline in (a) and of style augmentation 
[30] in (b). 

V. EXPERIMENTS 

In this section, we first assess the global performance of our approach on different 
data splits of the 2020 Drone-vs-Bird Challenge that we used in preparation of the 
challenge. We also evaluate the impact of different tile resolutions and data 
augmentation strategies. Then, we show the generalization performance between 
different datasets and finally, we report the official results of the 2020 Drone-vs-
Bird Challenge. 

A. Overall Performance 

We evaluated our approach for two different data sampling strategies. The results, 
which are averaged for 5 different random data splits, are reported in Table 1. The 
first data sampling strategy that we tested is the standard way of splitting data: all 
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images were sampled into training (85% of the images), validation (5%) and test 
(10%) sets. We named this strategy “known sequences”, since images were 
sampled without taking the video sequence of the Drone-vs-Bird dataset into 
account (meaning that images in the test set could come from the same sequence 
as images of the training set). For the second strategy, which we named “unknown 
sequences”, we exclusively selected 12 sequences for the test set and the images 
from the remaining 64 sequences were selected for training and validation. This is 
a more realistic way of measuring the generalization performance of our approach 
by decreasing the odds of overfitting the video sequences. The Precision-Recall 
curves of the 5 different runs on unknown sequences are shown in Fig. 7. For 
experiments in this section, we used a tile size of 480 pixels and an overlap of 100 
pixels between each tile. 

Table 1: Results (mAP) of our approach when testing on known and unknown sequences 

sampled from the 2020 Drone-vs-Bird Challenge. We report the mean and standard 
deviation for 5 different data splits (1 run per data split). 

Sequence mAP (%) 

Known 93.55 ± 0.6 

Unknown 66.0 ± 13.5 

 

Figure 7: Precision-Recall curves of our approach for the 5 “Unknown sequences” data 
splits used to generate the results in Table 1. 

B. Tile Resolution 

We evaluated the impact of tile resolution during training and tests. We report the 
results of this experiment in Table 2. We performed the experiment using the same 
data split for all tile sizes. The left column represents the training tile resolution,  
the top row represents the test resolutions and the values correspond to the mAP 
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(%). For some reason (not investigated), increasing the tile resolution in our case 
reduces the detection performance. 

Table 2: Impact of tile resolution on the mAP metric (%). The left column represents the 
training tile resolution and the top row represents the test resolutions. 

Tile Size (px) 320 480 640 

320 88.8 89.5 86.1 

480 91.3 92.9 89.1 

640 90.6 92.9 90.1 

 

Table 3: Impact of test tile resolution (with fixed training resolution of 480 px) on 
detection performances and processing time on images from seen and unseen 
sequences. 

Metrics / Tile Size (px) 320 480 640 

Known sequence mAP (%) 91.3 92.9 89.1 

Unknown sequence mAP (%) 56.1 57.8 44.3 

Processing time (ms) 195 169 125 

We also evaluated the impact of the test tile resolution (with a fixed training tile 
size of 480 pixels) on detection performances and processing times for both seen 
and unseen sequences. The results of this experiment are reported in Table 3. 

From Tables 2 and 3, a training and testing tile size of 480 pixels seems to be a 
good choice both in terms of detection performances and processing time. 

We also compared the performance of image tiling with image resizing in 
Table 4, for which the reported performances are on the same single known data 
split. We can see that performances when using higher resolution images are 
slightly superior to image tiling and the processing time is approximately the same. 
The result is counter intuitive since the tilling method maintains a higher resolution 
on the target and aims to get better identification. However, the discrepancy 
between the full resolution and the tilling is less than a percent and it can be 
concluded that both method gives similar performance. The biggest advantage of 
tiling is for image sequences, because image processing can be applied only on 
some sections which can greatly improve the processing time (up to a 10x gain). 
Additional details are given in section 6. 

C. Data Augmentation 

In this experiment, we evaluate the impact of synthetic data and style 
augmentation. We report the results on an “unknown” sequence in Table 5. We 
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can see from the results that adding both strategies helped our approach to 
generalize better to images of unseen sequences. 

Table 4: Performance when resizing the biggest side of the image to the mentioned 
resolution instead of using image tiling 

Test Resolution mAP (%) 

480 24.0 

640 57.3 

1024 73.3 

2048 93.2 

Full 93.5 

480 (tiling) 92.9 

Table 5: Impact of synthetic data and style augmentation evaluated on images from 
unknown sequences of the Drone-vs-Bird (DvB) dataset. 

Training  mAP (%) 

DvB 52.2 

DvB + synthetic 55.6 

DvB + synthetic + style augmentation 57.8 

D. Generalization to other datasets 

We evaluated the generalization performance of our approach by training on 
different datasets (described in section 4.1). We report in Table 6 the performance 
matrix when training on a certain dataset (left column) and testing on different 
datasets (top row). We can observe that generalizing to other datasets is a difficult 
task. By combining all of them together during training, we can however achieve 
good generalization. 

Table 6: Generalization performance on different test sets (top row) when training with 
different datasets (left column). 

Training images Drone-vs-Bird DRDC (colour) DRDC (IR) 

Synthetic 20.7 2.42 4.12 

Drone-vs-Bird 92.3 22.1 29.7 

DRDC (colour) 30.6 86.9 35.9 

DRDC (IR) 24.7 31.7 91.5 
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All 91.9 76.0 86.1 

E. Official 2020 Drone-vs-Bird Challenge Results 

We participated in the 2020 Drone-vs-Bird Challenge. Only 3 teams (including us) 
submitted their results among the participants. Our first submission included the 
synthetic images we have generated (see section 4A) and the second submission 
included only the images provided in the challenge. We ranked second in the 
challenge, 0.2% behind team Gradiant [32] as shown in Table 7. Their best 
submission included real images from external sources, which may have helped 
them get a boost in performance. However, as shown in section 5D, better 
generalization does not necessarily mean that it performs better for a specific 
dataset (especially one for which many scenes have been seen during training). It 
is thus difficult to compare both approaches, since different data was used in 
training. 

Table 7: Performance of the different teams that submitted their results. 

Team mAP (%) 

Gradiant - submission 1 80.0 

Gradiant - submission 2 72.9 

Gradiant - submission 3 75.3 

Eagledrone - submission 1 66.8 

ALEXIS (us) - submission 1 79.8 

ALEXIS (us) - submission 2 79.4 

VI. GLOBAL APPROACH WITH ALEXIS 

So far, we have described our approach for drone detection and reported results 
on both colour and infrared images. In this section, we detail how we leverage our 
drone detection approach into a global one that can use multiple sensors at the 
same time and can track multiple drones in real time. 

ALEXIS stands for Automated Light EXperimental Imagery System. It is mainly a 
data collection system and a real life test bench for counter UAV related algorithm 
development. Its hardware consist of two RGB visible cameras (narrow and wide 
field of views) and three infrared imagers (short-wave (SWIR), mid-wave (MWIR) 
and long-wave (LWIR)). All are mounted on a motorized pan & tilt turret installed 
on a tripod. The system’s control software is DRDC’s Versatile Tracking System 
(VTS). It allows adjusting the camera settings, acquiring and recording data and 
controlling the pan & tilt turret based on the tracking algorithms results. Each 
camera can be selected as the primary image source for live detection and tracking. 
The other cameras are still recorded and can be “hot swapped” as the primary 
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source if necessary. It is also possible to use the recorded data for later offline 
processing and analysis. The global tracking framework is at the core of the VTS and 
is presented in Fig. 8a. Each block is described in the following. 

 

 

(a) Overall structure. (b) Tracking details. 

Figure 8: Overview of the global tracking framework. 

The system’s inputs consist of an image stream and data streams from devices 
like turret encoders, an IMU (Inertial Measurement Unit) and a GPS (Global 
Positioning System). The information provided by the encoders and the IMU is 
useful to model the physical system’s dynamics, while the GPS position is used to 
geo-localize the tracked targets. The targets distance can be measured by a range 
finder or estimated by triangulation knowing the objects size. The image stream is 
fed into the detection and learning module. This is where the presented neural 
network is put to contribution. It can be used in two ways according to the available 
computational resources: alone as the main runtime detector or to initialize a 
lighter weight pattern matcher (for example: MOSSE [33]). The learning process is 
performed off-line when the main runtime detector is the neural network, while it 
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is said on-line when a pattern matcher is used since it is updated at each iteration 
with the results of the previous one. Since, both detection methods can produce 
multiple results, the remaining modules are designed to handle it; hence the 
framework implements a multiple target tracker. The observation producer knows 
the camera characteristics and uses the information from the physical world to 
convert the image results into a higher level physical representation: the 
observations. The tracking module associates each observation with an existing 
track or a new track (more details are given later). A track is more or less a series of 
observations. The same neural network can be used to periodically classify the 
tracks to validate that we are still following an appropriate target when the network 
is not the runtime detector. Other techniques can also be used to classify tracks 
based on the time behaviour of their properties. For example, the variation of the 
bounding box area over the time could help to distinguish better between drones 
and birds. Indeed, one would expect a pulsation pattern for a flying bird’s bounding 
box while a more constant (or slow changing) area is expected for a drone. Finally,  
a single track is selected amongst the probable drones according to a preference 
criterion (e.g. the nearest to the Field of View’s (FoV) center, the more likely to 
leave the FoV, the most probable drone, etc...) to produce a command that will 
drive the turret. The targets GPS position can also be provided to other tracking 
systems and counter-measures. 

Fig. 8b gives more details on the tracking block. It is based on two main concepts: 
measurements (the observations) and predictions. The tracker uses a model to 
produce a prediction for each active track. The model considers the camera’s field 
of view, the pan & tilt speed and position and target features (e.g. bounding box, 
intensity and shape statistics). The observations know their production system, 
hence the predictor can access the physical world information via the observations. 
The predictions are used to associate each observation to an active track. Since the 
associator handles multiple tracks and observations, it is possible to perform an 
optimised assignment at this stage. When there is no possible association for an 
observation, a new track is created and added to the active tracks pool. When an 
active track cannot be updated with an observation, it is updated with its 
prediction. Generally, this happens in the presence of occlusion or when a target 
leaves the field of view. A track can be updated with its prediction only for a certain 
specified amount of time before being declared as lost and being removed from the 
active pool. Depending on the selected prediction technique, the predictions can 
be updated based on the association results. 

The architecture combining a neural network and classical engineered 
algorithms allows for more flexibility than using a giant neural network taking an 
image stream as input and producing Pan and Tilt commands as outputs. Indeed, it 
allows to easily integrate the physical model of the observation system into the 
tracking process and thus make it possible to handle occlusions effectively. It a lso 
lightens a lot the network training requirements. It also makes it possible to add an 
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extra step of classification on the resulting tracks, either with a different neural 
network or with an engineered algorithm. 

VII. CONCLUSION 

In this paper, we proposed to use an image tiling strategy in combination with a 
detection approach based on YOLOv3 to detect small drones both in colour and 
infrared images. Our second place in the 2020 Drone-vs-Bird Challenge [16] shows 
that our results are quite competitive. However, when compared with our 
experiments on unknown sequences reported in Table 1, we can deduce that the 
sequences from the challenge were relatively easy. Many were in fact acquired in 
the same settings/backgrounds as the images in the training set, making it easier 
than expected for our approach. Also, our network may be biased towards finding 
any flying objects and the performance could potentially decrease drastically if 
many distractors (birds, planes, etc.) are present. Training for these additiona l 
classes would likely help to reduce this bias. 

Interestingly, the synthetic images we have generated did not improve much 
the performance of our approach, especially for the challenge sequences. It can 
likely be explained by the domain gap, mainly caused by edge artefacts created by 
pasting cropped objects on real backgrounds. By generating images completely in 
simulation instead of relying on imperfect segmentation masks, Hinterstoisser et 
al. [21] nearly doubled the performance of their detection approach when training 
with synthetic objects rendered on synthetic backgrounds instead of using real 
backgrounds. It could therefore be an interesting direction for future work, as it 
would also allow us to test a rendering technique called Domain Randomization 
[22]–[23], which has shown great generalization performances for object detection. 

Finally, we have developed a fully integrated system called ALEXIS which allows 
us to detect and track drones in real time and test algorithms in real context. At this 
point, the system has been evaluated qualitatively, but not quantitatively. 
Eventually, it would be interesting to compare the performance of the full system 
with the detection network. 
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